Теория типов


    Бесконечная иерархия, аналогичная лестнице метаязыков, позволяет избавиться от теоретико-множественных парадоксов. Ни одно множество не может быть членом самого себя или любого множества более низкого типа. Брадобрей, астролог, робот и каталог просто не существуют.

    ch137.gif


    У лестницы метаязыков Тарского существует теоретико-множественный аналог -- теория типов Бертрана Рассела. Не вдаваясь в технические подробности, можно сказать, что эта теория, устанавливая среди множеств иерархию по типам, исключает высказывания о принадлежности или непринадлежности множества самому себе. Тем самым исключаются противоречивые множества. Они просто-напросто вычеркиваются из системы. Если вы неукоснительно следуете правилам теории типов, то у вас нет разумного способа определить эти множества, чреватые противоречиями. Ситуация, возникающая при этом в теории множеств, аналогична той, с которой мы сталкиваемся в семантике, когда утверждаем, что такие утверждения, как парадокс лжеца, просто [не являются утверждениями", поскольку не соответствуют правилам построения "законных" утверждений.

    Не один год понадобился Бертрану Расселу, чтобы разработать теорию типов. Вот что он пишет в книге "Мое философское развитие":

    Закончив "Принципы математики", я предпринял решительную попытку найти решение парадоксов. Их существование я рассматривал почти как личный вызов и, если потребовалось бы, посвятил бы всю оставшуюся жизнь попыткам разрешить их. Однако по двум причинам такая приверженность идее избавления от парадоксов казалась мне нежелательной. Во-первых, вся проблема представлялась мне тривиальной... Во-вторых, сколько я ни пытался, мне не удавалось ни на шаг продвинуться в ее решении. Почти все 1903 и 1904 гг. ушли на борьбу с парадоксами, но без сколько-нибудь ощутимых признаков успеха.


Оглавление книги | Содержание части | Следущая глава