Загадка шести стульев


    ch22.gif

    Шестеро друзей заказали столик в популярной дискотеке. В последнюю минуту к ним присоединился еще один товарищ, седьмой по счету.

    ch23.gif

    Владелица дискотеки. Ну вот, наконец-то гости пришли! Я накрыла для них столик на шесть персон, но, должно быть, ошиблась: их не шесть, а семь!

    ch24.gif

    Владелица дискотеки. Впрочем, все отлично устроится! Первого гостя я посажу на первое место и попрошу его на минутку взять к себе на колени партнершу.

    ch25.gif

    Владелица дискотеки. Третьего гостя я посажу рядом с двумя первыми, четвертого -- рядом с третьим. Пятый сядет против того, кто держит партнершу на коленях, шестой -- рядом с пятым. Получилось неплохо: я рассадила шестерых и одно место за столом осталось свободным!

    ch26.gif

    Владелица дискотеки. Это место я попрошу занять партнершу, которая пока сидела на коленях у первого гостя. Разве не удивительно? Семь гостей владелица дискотеки рассадила на шести стульях, по одному на каждом стуле!


    Не сомневаюсь, что вы без труда обнаружите логическую ошибку в приведенном мною варианте старого парадокса о ловком хозяине гостиницы, сумевшем разместить десять гостей в девяти номерах так, что каждому из них досталось по отдельной комнате (см. мою статью "Математические софизмы" [Гарднер М. Математические головоломки и развлечения. М.: Мир, 1971, с. 125-132.]). Парадокс разрешается, если понять, что партнерша, которую владелица дискотеки попросила первого гостя подержать на коленях, в действительности гость номер 2 (а не 7). Седьмому гостю не нашлось места за столом, а второй гость или, точнее, гостья, сойдя с колен своего партнера, пересела на шестое место.

    На первый взгляд, кажется, будто этот парадокс нарушает теорему о том, что конечное множество из n элементов может быть поставлено во взаимно-однозначное соответствие только с конечными множествами из n элементов. Мы еще вернемся к этой теореме в парадоксе „Отель "Бесконечность"". "Загадка шести стульев" -- занимательный пример различия между конечными и бесконечными множествами.


Оглавление книги | Содержание части | Следущая глава