Геометрия

    ch31.gif

    

Парадоксы о плоскости, пространстве и невозможных формах

    Большинство людей понимает под геометрией евклидову геометрию на плоскости, то есть изучение свойств жестких плоских фигур. В этой главе мы будем понимать геометрию в более широком смысле -- так, как ее определил более века назад Феликс Клейн. Геометрия, по Клейну, занимается изучением свойств фигур в пространстве любого числа измерений, остающихся неизменными, или инвариантными, относительно любой заданной группы преобразований. Предложенная Клейном концепция геометрии оказалась наиболее плодотворной для унификации понятий в современной математике. В евклидовой планиметрии и стереометрии допустимые преобразования состоят из трансляций (перемещений с одного места на другое), зеркальных отражений, поворотов и сжатий или растяжений. Более глубокие преобразования приводят к аффинной геометрии, проективной геометрии, топологии и, наконец, теории множеств, в которой фигуру разрешается "рассыпать" на отдельные точки, с тем чтобы составить из них новую фигуру.

    Швейцарский психолог Жан Пиаже считает, что дети постигают геометрические свойства в обратном порядке. Например, малышу легче понять различие между кучкой красных и кучкой синих шариков (теория множеств) или между замкнутой в кольцо и разомкнутой резиновой лентой (топология), чем отличить пятиугольник от шестиугольника (евклидова геометрия).

    Топология -- довольно необычный раздел геометрии, изучающая свойства фигур, инвариантные относительно непрерывных деформаций. Представьте себе, что фигура или тело изготовлены из резины. Вы можете как угодно изгибать, растягивать и сжимать ее. Запрещается только отрывать часта и приклеивать их. Например, лист Мёбиуса обладает таким топологическим свойством, как односторонность: если представить его сделанным из резины, то как бы вы ни изгибали и ни растягивали его, он все равно останется односторонним. Многие собранные в этой главе парадоксы связаны с топологическими свойствами.

    Преобразованиям отражения, переводящим асимметричные фигуры, например прописную букву Л, в их зеркальные отражения, мы уделяем внимание не только потому, что с отражениями связано много парадоксов, но и потому, что они играют важную роль в современной геометрии и естественных науках. Зеркальная симметрия играет фундаментальную роль в химии, особенно органической, в которой большинство соединений существует в двух формах (левой и правой), в кристаллографии, биологии (в частности, в генетике) и в физике элементарных частиц.

    Хотя некоторые из собранных в этой главе парадоксов могут показаться забавными безделушками, каждый из них, как вы вскоре убедитесь, довольно быстро и незаметно приводит к таким важным разделам математики, как теория групп, математическая логика, теория бесконечных последовательностей, рядов и пределов. Те, кто изучает геометрию, обычно уделяют так много внимания построениям с помощью циркуля и линейки и доказательству сложных теорем, что совершенно упускают из виду связи, существующие между геометрией и другими областями математики, не говоря уже о нескончаемых и прекрасных приложениях, которые геометрия находит в астрономии, физике и других науках.


Оглавление книги | Содержание части | Следущая глава