Точка, которой не может не быть


    Пат поднимался по узкой тропинке, ведущей к вершине горы. Он отправился в путь в 7.00 утра и в тот же день достиг вершины в 7.00 вечера.

    ch342.gif

    Переночевав на вершине, Пат на следующее утро в 7.00 пустился в обратный путь по той же тропинке.

    ch343.gif

    В тот же день в 7.00 вечера Пат спустился в долину, где встретил своего преподавателя топологии миссис Клейн.

    М-с Клейн. Рада видеть вас, Пат. Известно ли вам, что какую-то точку своего маршрута вы вчера и сегодня миновали в одно и то же время?

    Пат. Должно быть, вы разыгрываете меня, миссис Клейн! Такого не может быть! Я шел с различной скоростью и даже останавливался на привал, чтобы отдохнуть и перекусить.

    ch344.gif

    Но миссис Клейн оказалась права.

    М-с Клейн. Представьте себе, что у вас есть двойник, который начинает спускаться в тот самый момент, когда вы начинаете восхождение. Независимо от того, с какой бы скоростью ни проходил он отдельные участки маршрута, вы все равно с ним встретитесь.

    ch345.gif

    М-с Клейн. Мы не можем сказать заранее, где именно произойдет встреча, но в том, что она непременно произойдет, нет никаких сомнений. Следовательно, какую-то точку маршрута вы вчера и сегодня миновали в одно и то же время.

    ch346.gif


    Поскольку Пат затратил на подъем и спуск одно и то же время, каждой точке маршрута мы можем сопоставить 2 числа, показывающие, когда Пат миновал ее по пути на вершину и при спуске. Между этими числами существует взаимно-однозначное соответствие, и по крайней мере два числа совпадают. Историю о Пате можно рассматривать как очень простой пример того, что топологи называют теоремой о неподвижной точке. Она принадлежит к числу так называемых чистых теорем существования, то есть лишь утверждает, что по крайней мере одна неподвижная точка существует, умалчивая о том, каким образом эту точку можно найти. Теоремы о неподвижной точке играют важную роль в приложениях топологии к другим областям математики и к естественным наукам.

    Суть знаменитой теоремы о неподвижной точке можно продемонстрировать, взяв пустую коробку и лист бумаги, точно покрывающий ее дно. Пусть каждой точке на листе бумаги соответствует та точка на дне коробки, которая под ней находится. Вынув затем лист из коробки и скатав его в шарик, бросим его обратно в коробку. Топологи доказали, что независимо от того, как именно смят лист бумаги и в какое место на дне коробки попал скатанный из него бумажный шарик, по крайней мере одна точка на листе непременно окажется над соответствующей ей точкой на дне коробки! (См. раздел "Теорема о неподвижной точке" в главе 5 ("Топология") книги Р. Куранта, Г. Роббинса "Что такое математика?" [Курант Р., Роббинс Г. Что такое математика? Элементарный очерк идей и методов. Изд. 2-е.-М.: Просвещение, 1967, с. 282-285.])

    Теорема о неподвижной точке, впервые доказанная голландским математиком Брауэром в 1912 г., имеет много необычных приложений. Например, она позволяет утверждать, что в любой момент времени на земном шаре существует такое место, где скорость ветра равна нулю. Другое, не менее удивительное следствие из той же теоремы: на земном шаре всегда существуют по крайней мере две точки-антипода (лежащие на противоположных концах одного диаметра Земли), в которых температура и барометрическое давление совпадают. Аналогичная теорема позволяет доказать, что шар, поросший волосами, невозможно причесать гладко: по крайней мере один волос всегда останется торчать. (В отличие от шара волосатый тор можно причесать гладко.) Хорошим введением в теоремы такого рода может служить статья Марвина Шинброта "Теоремы о неподвижной точке" (Scientific American, январь 1966).


Оглавление книги | Содержание части | Следущая глава