Ошибка игрока


    У Джонсов пятеро детей -- все девочки.

    М-с Джонс. Надеюсь, наш следующий ребенок не будет девочкой.

    М-р Джонс. Дорогая, после того как у нас родилось пять девочек, наш следующий ребенок непременно будет мальчиком. Верно ли это?

    ch42.gif

    Многие игроки думают, будто в рулетку можно выиграть, если, дождавшись длинной серии выпадений на красное, поставить на черное. Эффективна ли такая система?

    ch43.gif

    Эдгар Аллан По считал, что если два очка выпадают два раза подряд, то при следующем бросании кости вероятность того, что выпадет два очка, меньше 1/6. Верно ли это?

    ch44.gif

    Ответив утвердительно на любой из трех приведенных выше вопросов, вы попадете в ловушку, известную под названием "ошибка игрока". В каждом из трех случаев следующее событие полностью независимо от всех предыдущих событий.

    ch45.gif

    Вероятность того, что у Джонсов шестой ребенок будет девочкой, такая же, как вероятность того, что первый ребенок у них девочка. Вероятность того, что при игре в рулетку следующее число будет красным, такая же, как вероятность того, что красным было любое из предыдущих чисел. Вероятность выпадения двух очков при очередном бросании игральной кости всегда равна 1/6.

    ch46.gif

    Действительно, представьте себе, что мистер Джонс бросает вполне доброкачественную симметричную монету и она пять раз подряд падает вверх гербом. Шансов за то, что при очередном бросании она выпадет вверх гербом, столько же, сколько и прежде: пятьдесят на пятьдесят. Монета "не помнит", какой стороной она падала вверх в предыдущих бросаниях.

    ch47.gif


    Если наступление события A каким-то образом влияет на наступление события B, то говорят, что событие B зависит от события A. Например, вероятность того, что, выходя завтра из дому, вы захватите с собой зонт, зависит от того, велика ли вероятность дождя назавтра (точнее, от того, как вы оцениваете эту вероятность). События, о которых обычно говорят, что они "не имеют ни малейшего отношения друг к другу", называются независимыми. Вероятность того, что, выходя завтра из дому, вы захватите с собой зонт, никак не зависит от вероятности того, что президенту США на завтрак подадут яйца всмятку,

    Большинство людей с трудом верят, что "родственные узы", незримо связывающие, по их мнению, однотипные события, никак не сказываются на вероятности отдельного независимого события. Например, во время первой мировой войны солдаты на фронте во время артиллерийского обстрела предпочитали искать укрытие в свежих воронках от снарядов. Прятаться в старых воронках они считали рискованным, так как в них при очередном обстреле скорее может угодить новый снаряд. В свежей воронке солдаты какое-то время чувствовали себя в безопасности, так как считали совершенно невероятным, чтобы два снаряда попали подряд в одно и то же место.

    Много лет назад рассказывали анекдот об одном человеке, которому приходилось много летать на самолетах. Панически боясь, как бы кто-нибудь из пассажиров не пронес тайком на борт самолета бомбу, этот человек имел обыкновение возить с собой в портфеле свою "собственную" бомбу, правда незаряженную. Вероятность того, что кто-то из пассажиров пронесет на борт одну бомбу, этот человек считал малой, а вероятность того, что на борту самолета одновременно находятся две бомбы, -- ничтожно малой по сравнению с первой. Разумеется, вольно ему было возить с собой "собственную" бомбу: вероятность того, что кто-то другой пронесет бомбу на борт самолета, от этого ничуть не менялась, подобно тому как не меняется исход бросания одной монеты от того, что бросают другую монету.

    При игре в рулетку наибольшей популярностью пользуется "система", известная под названием "система Д'Аламбера". В основе ее лежит все та же "ошибка игрока": те, кто придерживается ее, совершенно упускают из виду, что независимые события независимы. Следуя системе Д'Аламбера, игрок делает ставку на красное или черное (или заключает пари с равными шансами на выигрыш и проигрыш), увеличивая ставку после каждого проигрыша и уменьшая после каждого выигрыша. Сторонники системы Д'Аламбера явно полагают, будто маленький шарик, брошенный на вращающееся колесо рулетки, каким-то образом "помнит", что помог им выиграть, и при следующем бросании менее охотно соглашается помочь им, уменьшая шансы на выигрыш. Если шарик приводит их к проигрышу, то из "сочувствия" при следующем бросании он охотнее идет на помощь проигравшему, повышая шансы на выигрыш.

    То, что колесе рулетки каждый раз крутится независимо от всей предыстории, служит весьма простым доказательством невозможности разработать такую систему игры в рулетку, которая обеспечивала бы игроку преимущество перед игорным домом. Слово "шансы" имеет два значения. Шансы на то, что брошенная нефальшивая монета упадет вверх "орлом" (или "решкой"), равные, или 1 к 1 (50 на 50 и т. д.). Стремясь извлечь прибыль, букмекер может принимать ставки на "орла" из расчета 4 к 5 (если вы поставите на "орла" 5 долларов и "орел" выпадает, то букмекер выплатит вам 4 доллара). ""Орел" идет 4 к 5", -- заявляет букмекер, занижая истинные шансы на выигрыш. В своем "Полном руководстве по азартным играм" Джон Скарн характеризует подобную ситуацию следующим образом:

    

Если вы делаете ставку, которая ниже истинных шансов, а в любой организованной азартной игре дело обстоит именно так, то вы, по существу, уплачиваете оператору (банкомету, крупье и т. д.) определенный процент за право сделать ставку. Ваши шансы на выигрыш обладают, как сказали бы математики, "отрицательным математическим ожиданием". Придерживаясь любой системы, вы делаете серию ставок, каждая из которых обладает отрицательным математическим ожиданием. Но сколько бы минусов вы ни суммировали, вам никогда не удастся получить плюс...

    В постскриптуме к детективному рассказу "Тайна Мари Роже" Эдгар Аллан По сетует на почти полную невозможность убедить обычного читателя в том, что "при игре в кости двукратное выпадение шестерки делает почти невероятным выпадение ее в третий раз и дает все основания поставить против этого любую сумму". Игральная кость, так же как и монета, колесо рулетки и другие "рандомизирующие" устройства, порождает серию независимых событий: на исход очередного бросания никак не влияет вся предыдущая серия бросаний.

    Если вы склонны поверить в какую-нибудь из разновидностей ошибки игрока, испытайте ее "в деле": сыграйте по системе, основанной на приглянувшемся вам варианте ошибки. Например, начните бросать монету, делая ставку 1 к 1 после того, как она выпадает 3 раза подряд вверх одной и той же стороной. Ставьте всегда на противоположную сторону. Иначе говоря, после серии из трех "орлов" ставьте на "решку", а после серии из трех "решек" ставьте на "орла". Сделав 50 ставок, вы обнаружите, что примерно в половине случаев проиграли (мы не утверждаем, что число проигрышей будет в точности равно 25, но оно заведомо будет близко к 25): вероятности выпадения "орла" и "решки", конечно же, равны.


Оглавление книги | Содержание части | Следущая глава
Интернет казино играть онлайн на игровых автоматах gaminatorslots.com.ru