Три карты


    Во многих азартных играх нельзя полагаться на интуицию, ибо последствия могут быть самыми неприятными. Вот, например, один нехитрый жульнический трюк с 3 картами и шляпой.

    ch420.gif

    Взглянув в зеркало, вы легко поймете, как сделаны эти карты: одна карта с двух сторон выглядит как туз пик, другая с одной стороны выглядит как туз пик, а с другой -- как туз бубен, и третья с двух сторон выглядит как туз бубен.

    ch421.gif

    "Банкомет" кладет все три карты в шляпу, перемешивает их и предлагает вам вытянуть любую карту и положить на стол. Затем он заключает с вами пари (и вы, и он ставите поровну), что снизу эта карта выглядит так же, как сверху. Предположим, что сверху извлеченная вами карта выглядит как пик бубен.

    ch422.gif

    Желая создать у вас впечатление, будто игра ведется честно, банкомет обращает ваше внимание на то, что ваша карта заведомо не может выглядеть с двух сторон как туз пик. Следовательно, вы вытащили из шляпы либо туза пик -- туза бубен, либо туза бубен -- туза бубен. У одной из этих карт на обороте изображен туз бубен, у другой -- туз пик. И у вас, и у банкомета шансы на выигрыш (по словам банкомета) равны.

    ch423.gif

    Но если игра честная, то почему ваши денежки так быстро перешли к банкомету? Да потому,что его рассуждения -- сплошное надувательство. В действительности его шансы на выигрыш не 1:1, а 2:1!

    ch424.gif

    Подвох в рассуждениях банкомета в том, что в действительности существуют не две, а три равновероятные возможности. Извлеченная вами из шляпы карта могла быть тузом пик -- тузом бубен, тузом бубен -- тузом бубен (вверх стороной А) и тузом бубен -- тузом бубен (вверх стороной В). Низ совпадает с верхом в 2 случаях из 3. Следовательно, в длинной серии игр банкомет выигрывает 2 игры из каждых трех игр.

    ch425.gif


    Эту карточную игру для демонстрационных целей придумал математик Уоррен Уивер, один из создателей теории информации. Он рассказал о ней а своей статье "Теория вероятностей", опубликованной в октябрьском номере журнала Scientific American за 1950 г.

    Один из способов правильного подсчета шансов на выигрыш в игре Уоррена Уивера приведен выше. А вот еще один. Масти на противоположных сторонах двух карт совпадают. Взяв наугад карту из шляпы, вы с вероятностью 2/3, то есть в 2 случаях из 3, выберете одну из этих карт (либо туза бубен -- туза бубен, либо туза пик -- туза пик). Следовательно, с вероятностью 2/3 картинка на нижней стороне карты совпадает с картинкой на ее верхней стороне.

    Карточная игра Уоррена Уивера представляет собой вариант так называемого парадокса Бертрана с коробками. Французский математик Жозеф Бертран привел его в своей книге по теории вероятностей в 1889 г. Представим себе 3 коробки. В одной из них находятся 2 золотые монеты, в другой -- 2 серебряные монеты и в третьей -- 1 золотая и 1 серебряная монеты. Выберем наугад 1 коробку. Ясно, что в ней с вероятностью 2/3 окажутся две одинаковые (либо золотые, либо серебряные) монеты.

    Предположим, однако, что мы извлекли из выбранной нами коробки одну монету и та оказалась золотой. Это означает, что в выбранной нами коробке обе монеты не могут быть серебряными. Следовательно, в нашей коробке находятся либо 2 золотые монеты, либо 1 золотая и 1 серебряная монеты. Так как оба случая равновероятны, кажется, будто вероятность выбрать коробку с двумя одинаковыми монетами упала до 1/2. (Разумеется, все наши рассуждения остаются в силе и в том случае, если извлеченная из коробки монета оказалась серебряной.)

    Могло ли на вероятности обнаружить в коробке две одинаковые монеты каким-то образом сказаться то, что мы вынули одну из монет и посмотрели, золотая она или серебряная? Ясно, что не могло.

    А вот еще один парадокс, тесно связанный с парадоксом Бертрана. Предположим, что вы бросаете 3 монеты. С какой вероятностью выпадут 3 "орла" или 3 "решки"? Для того чтобы 3 монеты легли вверх "орлами" или "решками", по крайней мере 2 из них должны выпасть вверх "орлами" или "решками". Бросив третью монету, вы либо получите третий "орел" или третью "решку", либо 1 монета ляжет не так, как 2 остальные. Шансов на то, что третья монета выпадает вверх любой стороной, 50 на 50. Следовательно, имеется 50 шансов на 50 за то, что третья монета выпадает вверх той же стороной, как и 2 остальные. Следовательно, с вероятностью 1/2 вы получите 3 "орла" или 3 "решки".

    В том, что приведенное выше рассуждение неверно, мы легко убедимся, выписав все возможные исходы бросания 3 монет (О -- "орел", Р -- решка"):

    

 О О О Р О О О О Р Р О Р О Р О Р Р О Р О О Р Р Р 

    Как вы видите, 3 "орла" или 3 "решки" выпадают только в 2 случаях из 8. Следовательно, правильно подсчитанная вероятность этого события равна 2/8=1/4.

    Рассмотрим еще один парадокс, также связанный с тем, что при подсчете вероятности принимаются во внимание не все возможные исходы. У мальчика 1 шарик, у девочки 2 шарика. Они катают шарики по направлению к вбитому в землю колышку. Выигрывает тот, чей шарик окажется ближе к колышку. Предполагается, что мальчик и девочка одинаково искусны в игре, а расстояния измеряются достаточно точно, и ничьих быть не может. С какой вероятностью выиграет девочка?

    Рассуждение 1. Девочка катает 2 шарика, мальчик -- только 1 шарик. Следовательно, вероятность выиграть у девочки в 2 раза больше, чем у мальчика, то есть равна 2/3.

    Рассуждение 2. Пусть A и B -- шарики девочки, C -- шарик мальчика. Могут представиться 4 случая.

    1) И A, и B ближе к колышку, чем C.

    2) Только A ближе к колышку, чем C.

    3) Только B ближе к колышку, чем C.

    4) C ближе к колышку, чем A и B.

    В 3 случаях из 4 девочка выигрывает. Следовательно, вероятность того, что она выиграет, равна 3/4.

    Какое из рассуждений правильно? Для того чтобы докопаться до истины, составим исчерпывающий перечень возможных исходов бросаний 3 шариков. В него войдут не 4, а 6 возможных случаев. Если считать, что на первом месте стоит ближайший к колышку шарик, то равновероятны следующие расположения шариков:

    

 A B C A C B B A C B C A C A B C B A 

    В 4 случаях из 6 девочка выигрывает. Это подтверждает вывод, полученный с помощью первого рассуждения: девочка выигрывает с вероятностью 2/3.


Оглавление книги | Содержание части | Следущая глава