Три скорлупки


    Зазывала. Подходите, не робейте. Если вы правильно угадаете, под какой скорлупкой горошина, я верну вам вдвое больше денег, чем вы поставите.

    Поиграв немного, мистер Марк решил, что его шансы на выигрыш не превышают 1 : 3.

    ch438.gif

    Зазывала. Куда же вы? Хотите, сыграем по-свойски, как друзья? Вы выбираете одну скорлупку. Выбрали? Хорошо. Теперь я переворачиваю пустую скорлупку. Горошина должна быть под одной из двух остальных. Следовательно, ваши шансы на выигрыш возрастают вдвое.

    ch439.gif

    Мистер Марк легко попался на удочку. Он не понял, что от переворачивания пустой скорлупки его шансы на выигрыш не изменяются.

    Почему?

    ch440.gif


    После того как мистер Марк выбрал скорлупку, по крайней мере одна из двух остальных скорлупок должна быть пустой. Поскольку зазывала знает, под какой скорлупкой лежит горошина, он всегда может перевернуть пустую скорлупку. Следовательно, из того,что перевернута пустая скорлупка, мистер Марк не извлекает для себя никакой полезной информации, которая позволила бы пересмотреть оценку вероятности "попадания в цель" (того, что горошина находится под выбранной им скорлупкой).

    В том, что это действительно так, вы легко убедитесь, взяв туза пик и два туза красных (бубновой и червовой) мастей. Перетасовав карты, разложите их в ряд на столе вверх рубашкой. Попросите кого-нибудь выбрать одну из карт. Какова вероятность, что выбранная карта будет тузом пик? Ясно, что эта вероятность равна 1/3.

    Предположим теперь, что вы заглянули в две карты, на которые не пал выбор вашего ассистента, и перевернули один из красных тузов вверх картинкой. Вы можете рассуждать следующим образом (именно так и рассуждал зазывала). Вверх рубашкой лежат только две карты. Туз пик с равной вероятностью может быть любой из них. Следовательно, вероятность того, что выбран именно туз пик, возросла до 1/2. В действительности же эта вероятность и после того, как вы перевернули красный туз вверх картинкой, осталась равной 1/3. Дело в том, что, заглянув в две оставшиеся невыбранными карты, вы всегда можете повернуть вверх картинкой именно красный туз; это ваше действие не несет никакой информации, которая могла бы повлиять на оценку вероятности угадывания туза пик.

    Вы можете удивить своих друзей, показав им следующую разновидность игры в "три скорлупки". Вместо того чтобы самому заглядывать в две оставшиеся невыбранными карты и узнавать, какая из них красный туз, попросите вашего ассистента (того, кто выбрал одну из карт) перевернуть одну из двух остальных карт вверх картинкой. Если перевернутая карта окажется тузом пик, то расклад объявляется недействительным и игра повторяется до тех пор, пока перевернутая карта не окажется одним из красных тузов. Увеличивает ли подобная процедура вероятность угадать туз пик?

    Как ни странно, эта процедура увеличивает вероятность угадать туз пик до 1/2. В этом мы можем убедиться, рассмотрев простой случай. Перенумеруем карты слева направо числами 1, 2 и 3. Предположим, что ваш ассистент выбрал карту 2 и перевернул вверх картинкой карту 3, которая оказалась красным тузом.

    Карты при этом могут быть разложены следующими 6 способами:

    ch441.gif

    Если бы третья (перевернутая) карта оказалась тузом пик, то расклад был бы объявлен недействительным. Следовательно, комбинации 4 и 6 можно исключить из рассмотрения. В четырех остальных случаях (1, 2, 3 и 5) карта 2, выбранная ассистентом, дважды оказывается тузом пик. Следовательно, вероятность того, что карта 2 -- туз пик, равна 2/4=1/2.

    К аналогичному результату мы пришли бы независимо от того, какую карту выберет ассистент и какая из двух остальных карт, если ее перевернуть, окажется красным тузом. Вот если бы мистеру Марку разрешалось выбрать одну из оставшихся скорлупок и она при переворачивании оказалась бы пустой, то тогда его шансы на выигрыш действительно увеличились бы с 1/3 до 1/2.


Оглавление книги | Содержание части | Следущая глава