Чей кошелек толще?


    Профессор Смит однажды обедал вместе с двумя студентами-математиками.

    Профессор Смит. Хотите сыграть в новую игру? Каждый из вас выкладывает кошелек на стол. Выигрывает тот, в чьем кошельке денег окажется меньше, и получает все деньги из другого кошелька.

    ch452.gif

    Джо. Если у меня денег больше, чем у Джилл, то она выиграет и мои деньги достанутся ей. Если же у нее денег больше, чем у меня, то выиграю я. Следовательно, я выиграю больше, чем могу потерять. Эта игра для меня выгоднее, чем для Джилл.

    ch453.gif

    Джилл. Если у меня больше денег, чем у Джо, то он выиграет и мои деньги достанутся ему. Если же у него денег больше, чем у меня, то выиграю я. Следовательно, я выиграю больше, чем могу проиграть. Эта игра для меня выгоднее, чем для Джо.

    ch454.gif

    Может ли одна и та же игра "быть выгоднее" для каждого из двух партнеров? Ясно, что не может. Не возникает ли парадокс из-за того, что каждый игрок ошибочно полагает, будто его шансы на выигрыш и проигрыш равны?

    ch455.gif


    Этот забавный парадокс заимствован из книги французского математика Мориса Крайчика "Математические развлечения". У Крайчика речь идет не о кошельках, а о галстуках:

    

Каждый из двух лиц утверждает, что его галстук красивее. Чтобы решить спор, они обращаются к третейскому судье. Победитель должен подарить побежденному свой галстук в утешение. Каждый из спорщиков рассуждает следующим образом: "Я знаю, сколько стоит мой галстук. Я могу проиграть его, но могу и выиграть более красивый галстук, поэтому в этом споре преимущество на моей стороне". Как может в одной игре с двумя участниками преимущество быть на стороне каждого из них?

    Игра, о которой поведал читателям Крайчик, честная, если мы с помощью некоторых дополнительных предположений четко и однозначно сформулируем правила игры. Так, если мы располагаем сведениями о том, что один из игроков имеет при себе меньшую сумму денег, чем другой, или имеет обыкновение носить дрянные галстуки, то игру нельзя будет считать честной. Но если мы не располагаем подобной информацией, то вполне допустимо предположить, что каждый из игроков имеет при себе некую случайную сумму денег -- от нуля до некоторого максимального предела, например до 100 долларов Если, исходя из этого предположения, мы построим, как это сделано в книге Крайчика, матрицу платежей, то увидим, что игра "симметрична" и ни один из игроков не имеет преимущества.

    К сожалению, это ничего не говорит нам о том, где именно в рассуждениях двух игроков кроется ошибка. Как мы ни бились, нам так и не удалось найти простое и удовлетворительное решение парадокса Крайчика. Книга Крайчика ничем не может нам помочь, а других работ, посвященных этой игре, насколько известно, не существует.


Оглавление книги | Содержание части | Следущая глава