Парадокс с выборами


    Предположим, что три кандидата -- Абель, Берне и Кларк (A, B и C) -- выставили свои кандидатуры на президентских выборах.

    ch534.gif

    Как показали итоги выборов, 2/3 избирателей отдали предпочтение Абелю перед Бернсом и 2/3 избирателей отдали предпочтение Бернсу перед Кларком. Означает ли это, что большинство избирателей отдало предпочтение Абелю перед Кларком?

    ch535.gif

    Не обязательно. Если голоса избирателей разделились так, как показано на рисунке слева, то возникла парадоксальная ситуация. Предоставляем объяснить ее самим кандидатам.

    ch536.gif

    М-р Абель. Две трети избирателей предпочли меня Бернсу.

    ch537.gif

    М-р Бернс. Две трети избирателей предпочли меня Кларку.

    ch538.gif

    М-р Кларк. Две трети избирателей предпочли меня Абелю!

    ch539.gif


    Этот парадокс, известный еще в XVIII в., представляет собой пример нетранзитивных отношений, которые могут возникнуть при попарном выборе. Понятие транзитивности применимо к таким отношениям, как "выше, чем" ("x выше, чем y"), "больше, чем", "меньше, чем", "раньше, чем", "тяжелее, чем". Вообще, отношение R называется транзитивным, если из того, что истинны утверждения xRy и yRz, следует, что истинно утверждение xRz.

    Парадокс с выбором кажется столь неожиданным потому, что мы ошибочно полагаем, будто отношение "быть предпочтительнее, чем" всегда транзитивно. Если кто-то отдает предпочтение A перед B (то есть для него A предпочтительнее, чем B), а B перед C, то естественно ожидать, что этот кто-то отдает предпочтение A перед C. Но как показывает парадокс, это верно далеко не во всех случаях. Большинства избирателей отдало предпочтение кандидату A перед кандидатом B, большинство избирателей отдало предпочтение кандидату B перед кандидатом C, и большинство избирателей отдало предпочтение кандидату C перед кандидатом A. Ситуация заведомо не транзитивная! Этот парадокс иногда называют парадоксом Эрроу в честь лауреата Нобелевской премии экономиста Эрроу, показавшего с помощью такого рода логических парадоксов принципиальную невозможность абсолютно демократической избирательной системы.

    Парадокс может возникать также в любой ситуации, в которой требуется произвести выбор одной из трех альтернатив, попарно упорядоченных по трем свойствам. Предположим, что A, B и C -- три претендента на руку и сердце одной и той же невесты. Пусть строки некой матрицы 3x3 содержат оценки, даваемые невестой каким-нибудь трем качествам кандидатов в женихи, например их уму, внешности и обеспеченности. Сравнивая оценки попарно, невеста может оказаться в довольно затруднительном положении, если выяснится (а такое легко может слу читься), что кандидату A она отдает предпочтение перед B, B -- перед C и C -- перед A!

    Последуем математику Полу Халмошу и будем считать, что А означает пирожки с абрикосовым вареньем, В -- с вишневым и С -- со сливовым*. Предположим, что в буфете в продаже всегда есть пирожки с вареньем только двух сортов. Матрица показывает, как посетитель оценивает пирожки по вкусу, свежести и размерам. По вполне разумным мотивам посетитель может предпочесть пирожки с абрикосовым вареньем пирожкам с вишневым вареньем, пирожки с вишневым вареньем -- пирожкам со сливовым вареньем и пирожки со сливовым вареньем -- пирожкам с абрикосовым вареньем.

    Более подробно парадоксы с нетранзитивными отношениями рассмотрены в моей статье (Scientific American, октябрь 1974), а также в статье "Выбор избирательной системы" Рихарда Ниемы и Уильяма Райкера (там же, июнь 1976) и Линн Стин об избирательных системах (там же, октябрь 1980).


Оглавление книги | Содержание части | Следущая глава